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The mean spherical approximation (MSA) has proved to be a very general and 
flexible method to analyze equilibrium statistical mechanical systems. In this 
note we test its accuracy against a simple one-dimensional model, i.e., a lattice 
gas of polarizable molecules where the internal degree of freedom is treated as 
quantized harmonic oscillators which interact via harmonic forces. This model 
can be solved exactly. We find a very good agreement between the MSA and 
exact solutions. 
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1. I N T R O D U C T I O N  

Previously  a mode l  for a fluid of quan t ized  in terac t ing  po la r izab le  par t ic les  
has been solved app rox ima te ly  using a pa th  in tegral  represen ta t ion  of the 
pa r t i t ion  function. (~'2)'2 This pa th  integral  may  be regarded  as the classical  
pa r t i t ion  funct ion for a system of in terac t ing  polymers .  The  system could  
then be ana lyzed  by a genera l iza t ion  of  the M S A  (mean spherical  
a p p r o x i m a t i o n )  m e t h o d  tha t  has been widely employed  on  classical  
systems. In  this mode l  the center-of-mass  m o t i o n  of the molecules  was 
t rea ted  classically, while the f luctuat ing (osci l la t ing)  d ipole  mome n t s  and  
their  d i p o l e - d i p o l e  in terac t ion  were quant ized.  W h e n  the d ipole  m o m e n t  
f luctuates in a ha rmon ic  potent ia l ,  the result  is a system of coupled  har- 

1 Institutt for teoretisk fysikk, 7034 Trondheim-NTH, Norway. 
2 The corresponding classical problem of polarizable particles was first solved in a mean 

spherical approximation (MSA) by M. Wertheim [J. Chem. Phys. 26:1425 (1973)]. He con- 
sidered the model with nonfluctuating dipole moments. Later L. Pratt [Mol. Phys. 40:347 
(1980)] and J. S. H0ye and G. Stell [J. Chem. Phys. 73:461 (1980)] solved the 
corresponding classical problem in the MSA for particles with fluctuating dipole moments. 
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monic oscillators. If the oscillators are located on the sites of a close- 
packed regular lattice, this model can be solved in a straightforward way 
be computing the eigenfrequences of the system. However, in other cases, 
with disordered location of the oscillators, the problem becomes highly 
nontrivial. In the book by Lieb and Mattis the situation for disordered 
chains of harmonic oscillators is reviewed. (3) (The system we shall consider 
here is actually a special case of the models described there.) 

From the MSA solution for thermodynamic quantities like the internal 
energy it is possible to derive the corresponding frequency spectrum./4'5) 
For a close-packed lattice the MSA yields the exact result. 

In this work we want to check the accuracy of the MSA solution 
against a simple one-dimensional model that can be solved exactly. The 
model consists of harmonic oscillators placed randomly on the lattice sites 
of a linear chain, and the oscillators interact only when they are nearest 
neighbors. In Section 2 we define the model more precisely, and in Sec- 
tion 3 we evaluate the exact solution. In Section 4 we make explicit the 
MSA solution for this special case, and in Section 5 we compare  the MSA 
result with the exact solution. From this comparison we conclude that the 
agreement is remarkably good. The situation with greatest disagreement is 
illustrated in Figs. 1 and 2, where the full curves are computed numerically. 
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Fig. 1. The internal energy u per particle at T =  0 is shown as function of the density- p of 
occupied sites. It is plotted relative to the ground state energy u0=  (l/2)hco o of a single 
oscillator. The fully drawn curve is the MSA solution while the dashed curve represents the 
exact solution with the particles (oscillators) randomly distributed along the one-dimensionaI 
chain. The curves are made for the extreme case with relative strength of interaction e = 1. 
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Fig. 2. The relative difference between the MSA solution and exact solution is shown 
enlarged for the same situation as in Fig. 1, i.e., T= 0 and e = 1. The A = UMsA/UEx -- 1 where 
UMsa is the MSA internal energy while UEx is the exact one. 

It should be noted here that  the exact solution is performed foi" a quenched 
system where the occupied positions along the chain are fixed. By anneal- 
ing the system the occupied positions will be thermally rearranged to 
favour some lowering of  the energy. This would then increase the deviation 
from the MSA result somewhat.  However,  the exact annealed result 
requires more  numerical work to evaluate, and we have for this reason not  
tried to obtain it. 

For  other models in one, two, or three dimensions we in general 
expect MSA results to be even closer to the exact solution tban in the case 
considered here. This is clearly so when the interaction goes beyond nearest 
neighbors,  since MSA improves with increasing range of interaction until 
the exact mean field result is reproduced in the limit of infinitely long- 
ranged interaction. However,  in these other situations exact results, by 
which comparisons  can be made, are usually not  available. 

2. M O D E L  

The model  we shall consider is a one-dimensional  lattice gas of 
polarizable molecules, each of which consist of two masses, r n ~ m , , ,  with 
opposite charges of magni tude  e. Their relative mot ion  is associated with 
the reduced mass, 

mr = mem,, /(me + m,~) 
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while the center of mass is assumed to be bound to a lattice site. We 
assume the relative motion to be represented by a quantized harmonic 
(Drude) oscillator. (6) For the interaction between molecules we take into 
account only nearest-neighbor dipole dipole interaction. By that the model 
can be solved exactly. Thus, with a fixed set of sites occupied by molecules, 
the system is described by the Hamiltonian 

H =  P? 2c~ q2 

1 1 
+ ~ ~ - 5  [qeqj-  3(h' qi)(h" q j)] (2.1) 

l,J 

where a is the lattice spacing and h a unit vector in the lattice direction. 
The latter sum in (2.1) is only over oscillator pairs (i, j)  that are nearest 
neighbors. (The factor 1/2 in front of it compensates for double counting.) 
The spring constant is chosen such that c~ is the polarizability of a single 
molecule. (We use units such that the electric charge e = 1.) 

Note that the system is not genuine one-dimensional, since so far we 
are using the dipole dipole interaction of a three-dimensional world. Also, 
it is consistent to use the dipole-dipole interaction only when ( q 2 ) ~ a  2. 

The lattice, of total length N ~ oo, is assumed to be filled to a density 
p, such that 

1 
p=~v~  nPn (2.2) 

Then P,  is the number of segments of length n, since for a given con- 
figuration of oscillators, the lattice breaks up into filled segments of dif- 
ferent lengths. 

With, 

1 
2 = ) - ~  Z Pn (2.3) 

n>~l 

the length distribution function is 

Pn = P./(2pN) (2.4) 

The 2-1 will be the average length of a filled segment. The model may now 
be considered in two versions: (i) quenched, the length distribution is 
predetermined; (ii) annealed, the length distribution function is adjusted so 
that the free energy of the system is minimized. We shall in this paper 
mostly consider the quenched case. In the MSA treatment of this problem 
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these two cases are not distinguishable, since spatial correlations are not 
accounted for in the MSA. 

The Hamiltonian (2.1) can obviously be separated into three parts, 
each of which represents independent modes of oscillation, one paralM1 to 
1i and two transverse to it. Thus it is sufficient to consider only one of these 
parts. So, instead of (2,1) we now write the Hamiltonian as 

H= ~-~m p~ + x~ --~ E-fs ex,xj (2.5) 
,.j 

where e is the relative strength of interaction. Again ~2i, j is only over 
nearest-neighbor pairs (i, j). Mechanical stability requires le] < 1. 

3. EXACT SOLUTION 

3.1. General Features 

The thermodynamic properties of the model can be deduced from the 
partition function, 

Z=e ~F= ~ Tr[e-/SH] (3.1) 

where H is given by Eq. (2.5), and the summation runs over either (i) all 
configurations, consistent with a given length distribution function in the 
case of a quenched system, or (ii) all configurations, in the case of an 
annealed system. However, in the thermodynamic limit only a single length 
distribution function will contribute to the bulk free energy, F/pN. 

Let H n be the Hamiltonian (2.5) restricted to a filled segment of length 
n, and define 

e 13n~,=Yr[e-~Ho] (3.2) 

so that n times fn is the free energy for a filled segment of length n. Since 
there is no interaction betwen different filled segments in the lattice, 
Eq. (3.1) may be rewritten 

Z exp S{P}/k-~ Z nfnP.] (3.3) Z =  
(el n~l J 

where P .  is the number of filled segments of length n. There is no sum- 
mation over {P} in the quenched case. The factor 

v{P} =- e s{e~/k (3.4) 
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counts the number of configurations consistent with a length distribution, 
{P}. As the notation suggests, S{P} is an entropy term (but there are 
additional contributions to the entropy from the internal degrees of 
freedom, included in the f,,'s). A simple counting argument 3) shows that 

(N+ 1 - M ) !  
v{P} : (N + l - M -  C)! t ] ~  z Phi 

I ( 1 - p ) l n ( 1 - p ) -  (1-p-2p)ln(1-p-2p) in v{r} S{P,}/k N 

-- 2p ln(2p)--2p ~ piln Pi] (3.5) 

where 

M = p N = ~ n P ~ ,  C = 2 p N = ~ P , ,  
n n 

The counting argument goes as follows. There are M sites occupied by 
segments. Associate the neighboring empty site on the left-hand side of the 
segment to it. (It must always be accompanied by an empty site to separate 
it from other segments except for the segment at the left end of the chain). 
Thus we are left with N -  M -  ( C -  1 ) empty sites that can be interchanged 
with C segments of varied lengths to yield different configurations. 
Straightforward combinatorics then give the result above for v{P}. 

Result (3.5) may also be obtained by a more elaborate evaluation by 
regarding the filled segments (including an empty site at one end of each of 
them) as a mixture of hard rods whose entropy can be found from the 
equation of state. 

In the quenched case, with the sites on the lattice filled at random, the 
length distribution function is found by direct arguments to be 

p =( l_p )p~  1 (3.6) 

It is also straightforward to verify that this is the distribution which 
maximizes S{P} with respect to P,, when p is kept constant, leading to 

S{P} = -Nk[p  In p + (1 -p ) ln (1  - p ) ]  (3.7) 

in agreement with the entropy of a noninteracting lattice gas. 
In the annealed case one would have to determine the length dis- 

tribution {p,} which maximizes the exponential of expression (3.3) under 
the constraint p = const. 

3 We are  indeb ted  to Prof .  P. C. H e m m e r  for  d e m o n s t r a t i n g  this to us. 
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Analogous to (3.6) the solution is now found to be of the form 

p ,  = Co e ,(c, +, f . )  (3.8) 

where Co and cl are constants that can be determined. But clearly with a 
general form o f f ,  the problem can no longer be handled by purely analytic 
means. So, for the rest of this paper, we shall consider only the quenched 
version of the model. 

3.2. Solution of the Finite Segments 

We next turn to the task of finding the exact solution. 
With the Hamiltonian (2.5) the equations of motion are 

mr2j=-[(Xi- �89 j l-~-Xj+l)]/o~, for l < j < n  

mrSc 1 = - - ( X  1 - -  1~X2)/0r 

mr .~  n = - - ( X  n - -  �89 X n 1 ) / ~  

(3.9) 

For an infinite chain (n--, oo) 
straightforward to solve Eqs. (3.9). 

A solution is then 

the end effects vanish, and it is 

x j =  Ae i (p j  ~ot) + A ,  e i(pj ~)t) (3.10) 

(The general solution is of course a sum of such solutions.) By insertion the 
relation between q and the frequences co for the eigenmode (3.10) is found 
to be 

m r c o  2 = [ -1  - -  ~; cos(p)]/c~ (3.11) 

With end effects (i.e., finite n) one notes the set of equations (3.9) may be 
extended with oscillators at both ends, provided Xo and xn + 1 are held fixed, 
i.e., x 0 = x , + ~ = 0 .  By that the end effects vanish in (3.9). Instead, they 
appear as the boundary conditions Xo=X,+~ =0.  Imposing this on 
Eq. (3.10) implies 

xj = C sin(pj) (3.12) 

where p is restricted to 

k 
p = 7 c - -  with k = 1, 2,..., n (3.13) 

n + l  
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Thus, the eigenenergies hco~ for a segment of n units are 

h6% =tkooD 7r , k =  1, 2,..., n 
(3.14) 

hOo=h/C~mr, D(x)=  [1 - cos(x)] 1/2 

The quantized internal energy u. for such a segment of n units is then 

1 n 

With Pn segments of length n the total internal energy becomes Zn Pnu,. 
Now from (2.4) Pn = 2pNp~z with p,  given by (3.6). Thus from (2.2) 

1 =  1 E npn - 2_ (3 .16 )  
pN n 1 p 

i.e., 

Pn = pN(1 - p)Zpn - ,  (3.17) 

The exact average internal energy per particle is accordingly 

u =  p ,  un = ( 1 p)2 un 
t / = l  

with un given by (3.15). 

4. T H E  M S A  S O L U T I O N  

Now we want to solve the problem of the random linear chain 
approximately by the MSA approach in classical statistical mechanics, as 
generalized to (semi)quantized polarizable fluids. (1'2'4'5) To find the MSA 
results we will utilize the equations obtained in Refs. 1 and 4 specialized to 
the linear chain considered here. When referring to the equations of Refs. 1 
and 4 we will precede them by the numerals I and II, respectively, and we 
will not rederive them here, only evaluate general results more explicitly for 
the case considered. 

The quantum partition function for a single oscillator is given by the 
path integral (I.16). In the present case it reads 

z ( N ) : f  exp{ - -  N~I [  " ] } N  ~ -~ (x ,+ , -xp )2+t l r  FI (Adxq) (4.1) 
q = O  
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where now 

rn r / a ~1/2 
a h2 , A =  , and xN=Xo 

The path is discretized with intervals of length t/, such that fl = Nt/, and the 
limit N--* co (or r/--,0) is implicit. The single oscillator potential ~b(x) is 
found from the Hamiltonian (2.5), 

I x2 (4.2) ~(x) = 2~ 

The path integral (4.1) can be interpreted as the classical partition 
function of a flexible polymer of length ft. Thus each oscillator of the one- 
dimensional chain may be regarded as a classical polymer, and the interac- 
tion between the oscillators may be considered as interaction between 
polymers. In the present case this pair interaction (I.17) for two oscillators 
1 and 2 is 

0 ( 1 2 ) -  r/ e u fl2C~ ~ XplXp23pq (4.3) 
p , q  = ] 

when they are nearest neighbors on the lattice. Otherwise it is zero in 
accordance with the last sum of the Hamiltonian (2.5). 

To do the MSA on the polymer problem we again have to solve the 
OZ equation (I.18), modified to the situation where 0(12) is given by (4.3) 
instead of (I.17). This simplifies matters. For  example, there are no CD and 
hD terms, and we can thus replace c~ with c and h~ with h. So the transfor- 
med OZ equation (I.31) becomes 

where 

U(k) = ~K(k) + RK~K(k) U(k) 

K = 2rc(n/rlN), n = 1, 2,..., N 

(4.4) 

is the Fourier transform variable along the polymers, while the tilde denote 
Fourier transform on the lattice points in space. With (4.3) the boundary 
conditions for (4.4) instead of (I.35) become 

cK(p)= 
I s [P[ = l  

o, I p l > l  
(4.5) 

h~(p )=0  
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when the distance a between lattice points is set equal to 1. The RK is 
determined by (I.47) 

P 
R K  = rTK 2 + 1/o: + c K'~''tu) (t/--, 0) (4.6) 

Compared to (I.47) the factor 3 has been deleted in (4.6) since the xp in 
(4.3) are scalar amplitudes while in (I.17) they are vectors with three com- 
ponents. So far the c~(0) is unknown, but (4.4) with conditions (4.5) will 
determine it. With (4.5) the Fourier transform of cK(p) is 

8 
EX(k) = c + - cos(k) (4.7) 

with c =  cX(O). So (4.4) and (4.5) yield the following equation: 

0 = hX(O) = - -  ~ h'K(k) dk = ~ _~ 1 - RKaK(k) 

= R,~ 1 - 2 7  _~l -R- f fg~(k)  

dk 

(4.8) 

This integral can be evaluated explicitly, since 

1 S dk _ 1 
2~ ~ l - r c o s k  ( l - r 2 )  1/2 

With (4.7) inserted we thus find from (4.8) 

(4.9) 

= m  1 1 ~ RE 
with r = 

t - -  R K c  (1  - -  z 2 )  1/2 c~ 1 - -  R ~ : c  
(4.10) 

which gives 

Inserting (4.6) for R x  further gives (with z = a K  2 + 1/:0 

[ z + O - p ) c ]  2 -  p = ( z + c )  2 

(4.11) 

o r  (4.12) 

( 2 - - p ) c 2 + 2 z c + p  = 0  
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It is required that 1 - - R K c > 0  so only the positive square root  is of 
interest. Therefore [c = ck(0)], 

1 cX(O)=~_p{- - (6K2+~)-k- I ( f fK2+!)2- -p(2- -p) (~)211/2  } (4.13) 

With cK(0) known it is now possible to obtain thermodynamic  quantities 
like the internal energy u per particle. F rom Eq. (I.76) or Eq. (II.1) we in 
the present case find 

flu= ~ f ( K  2) (4.14) 
K 

where 

f ( K  2) = 1 - oK 2 - - = -  R K  1 - -  c r K 2  
P ~7K2_k_(]/og)+cK(O ) (4.15) 

and K =  27r(n/fl), n = 1, 2, 3,... ( f i=  J/N, N ~  oo). For  the same reason as 
with Eq. (4.6) the factor of 3 does not  appear  here. Like (II.7) it is possible 
to write 

I g(m2) d(m2) (4.16) f ( K  2) = j K 2 q- m 2 

where g(m2)/m 2 is the frequency distribution for the disordered chain of 
interacting harmonic  oscillators. With (4.16) inserted into (4.15) the sum- 
mat ion  with respect to K can be performed (e.g., see Appendix of Ref. 1). 
So like (II.13) 4 we find 

1 (~ )g(m2)d,  2" 
u = ~  I m coth tim (4.17) 

o - 7 -  

where 
m = h c o  (4.18) 

and co is the frequency. The distribution g(m 2) fulfills II.14), 

g(m2) d(m 2) (4.19) 
1 = f ( 0 ) = j  rn 2 

Equat ion  (II.11) determines g(m 2) in terms of f (K2) ,  1.e., 

g(m2) = _ 1 Im f (  - rn 2 + i?) (7 -+ 0 + ) (4.20) 
TC 

4 There is a misprint in Eq. (II.13): The cosh(�89 in the denominator should be replaced by 
sinh(�89 

822/42/3-4-19 
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For convenience we introduce the variable 

1 ( 1 -  o~o-m2) = 1-- q=~ (4.21) 

and the distribution ~(q) such that 

g(m 2) 
m2 dm 2 = '~(q) dq (4.22) 

Inserting (4.13) into (4.15), utilizing (4.20)-(4.22), we obtain 

I 1 [p(2-p)-q2] L/2 q2<p(2_p ) 
~,(q)= rcp l -q2 , 

0, otherwise 

(4.23) 

5. C O M P A R I S O N  OF M S A  A N D  THE EXACT S O L U T I O N  

The most detailed comparison between MSA and the exact result 
would be to compare the resulting frequency distributions since other 
quantities will follow from these. As expected, it is immediately clear that 
the MSA distribution (4.23) will deviate from the exact one when 0 < p < 1, 
since the former is continuous while the latter is discretized when p < 1. 
This qualitative difference makes it somewhat difficult to compare them 
directly. Thus we will focus on integrated quantities. However, for a com- 
pletely filled chain, p = 1, the distributions are identical, as has already 
been concluded. From the exact eigenfrequences for a segment of n units 
[Eq. (3.14)] we find 

q = c o s  rr (5.1) 

For p ~ 1 the segments become longer and longer, i.e., n ~ oo, such that 
(5.1) become continuous. Differentiation yields the frequency distribution 

d k 
, 1 ~(q)=  _ = _  ( l _ q 2 ) 1 / 2  (5.2) 

dq ~ sin <n--~l To) ~ 

This is identical to the MSA result (4.23) when p = 1. Likewise (4.23) yields 
the exact result when p = 0 ,  since then it reduces to a 6 function at 
~m2= 1/c~, which is the frequency of the uncoupled oscillators. 
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The width of the frequency distribution (4.23) increases with density p. 
This width is a natural quantity to compare with the exact result. The 
average width squared becomes 

(q2) = f dq q~g(q) (5.3) 

[As may be verified by direct integration, ~(q) is normalized in accordance 
with (4.19).] Inserting Eq. (4.23) into (5.3) gives an integral, which can 
be evaluated in a straightforward way by first substituting 
q = [p(2 _ p)] 1/2 sin ~b and then u = (1 - p) tan 4;. The result is 

{q2) = �89 (5.4) 

The corresponding width for the exact solution is found by summing 
over the different frequences of a segment of n units and then summing 
over the distribution of segments. With the eigenfrequences (5.1) it is 
straightforward to show that 

a 

k = l  

Weighing this over the distribution (3.17) of segments then yields for the 
exact solution 

( q 2 ) = ( l _ _ p ) 2  ~ a,,p,,-a t = 2P (5.6) 
n = l  

which coincides with the MSA result (5.4). 
We may now compare some thermodynamic quantity. In view of the 

fact that the exact and approximate frequency distribution have the same 
width, which we just showed, it is reason to believe that other integrated 
quantities will deviate little when comparing the MSA and exact solutions. 
We choose to study the internal energy per particle, u. It is already clear 
that the MSA becomes exact when p -~0  and p ~ 1. Furthermore, it 
becomes exact for large temperatures (/3--,0), and of course when the 
relative strength of interaction e ~ 0. The limit/~ ~ 0 is obvious since this is 
the classical limit in which the energy of each oscillation mode is kT, 
independent of frequency. (On the other hand, the free energy will depend 
on the frequencies when /~-~ 0.) Thus we may concentrate on low tem- 
peratures (i.e.,/~ --, oc ) where the deviations are most significant, and where 
the internal energy becomes the ground state energy (and also equal to the 
free energy). 
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For limiting cases the u may be computed explicitly by analytic means. 
Otherwise it can be done numerically. When fi--, ~ Eq. (4.17) becomes, 
with use of (4.21), 

u = �89 o I dq(1 - ~q)1/2 ~(q)  (5.7) 

When p is small, the g(q) is narrow, and one may expand 

[ 1 1 (1-eq)*/2= 1 - s e q - g ( e q )  2 ' ' '  (5.8) 

Use of (5.4) thus yields for small p for the MSA, 

(5.9) 

For the exact solution Eq. (3.18) with frequencies (5.1) we find 

1 ~ 1/2 q_ (1 ..}.. 1 8) 1/2] _L 
U ='0(1 --/9)2 {1 q- P U(1 --2 gJ 2 ' ' ' t  

1 )t/2 ( 1 1 '1/21 

(' + "l (5.1o) 

To have a stable system it is necessary that ]er ~< 1. Thus the magnitude of 
the p terms of (5.9) and (5.10) cannot differ much. 

When p = 1 one finds from Eq. (5.2) that the MSA yields the exact 
result. In this case one finds for the internal energy (5.7) [utilizing Eqs. 
(4.23) and (5.3)] 

1 1 (1 __~q~l/2 
/d = 2"-~ h(d)O ; ldq~l-~-~/ 

=~ ~ ~ (5.11) 

where 

f 
ro/2 

E(r )  = (1 -- r sin 2 0) 1/2 dO (5.12) 
"~0 
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is the complete elliptic integral of the second kind. For the extreme case 
e=  1 one easily computes E(1)=  1, or from (5.1) (p = 1) 

1 
u 7 x/2 = 2 h~176 0.9003 = ~ hCOo 2 1 (5.13) 

This shows that the internal energy per particle does not vary much with 
within its stability range. We may also expand (5.11) for small e (putting 
q = sin q~ by integration) 

u=-~ho~ o 1-- e 3 1- -~e  ""  (5.14) 

It is also possible to compute u analytically when p is close to 1. By 
extension to a full period of the cosine function the sum that yields u can be 
considered as a Simpson rule approximation to the result for p = 1. From 
this we obtain 

Un =~hco o D 
k = l  

_ 1 
=~he)  o [(n + 1 )D] - -~  [D(0) 

(1) 
+ D(n)] + O ~-5 (5.15) 

However, by a more careful analysis with application of the Euler- 
Maclaurin summation formula, it can be shown that the last term in (5.15) 
can be replaced by O(e A,) when le] < 17. (It turns out that all the higher- 
order terms in the summation formula vanish due to periodicity, leaving 
only the remainder term which can be shown to be exponentially small. 
The coefficient A will increase with decreasing ]el.) 

The average internal energy per particle thus becomes 

U=(1 - -P )  2 i P'~-lun 
n = l  

(5.16) 

Here 

.O = -  D ( x )  dx 
o 
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which like (5.11) give the energy when p = 1. We may again expand in e to 
find 

1 1 2 25 
/ ) - ~  [D(0)+D(Tr)]  =~-~e + 1 - - ~ e 4 +  ' "  (5.17) 

The MSA solution may also be found more explicitly when p is close 
to 1 ( T = 0 ) .  As concluded before the exact result u = �89 is obtained 
when p = 1. When 1 - p  is small the ~(q) of (4.23) changes like the factor 
lip when q is away from the end points of the interval. At the end points 
the changes will be peaked and can be regarded as two 6 functions of equal 
magnitude (due to symmetry). Thus for small ( 1 -  p) 

lg(q) p= +a[3(q 1 ) + c ~ ( q + l ) ]  (5.18) g(q) q 1 

where a is determined by the normalization (4.19) together with (4.22), 

1 
1 = - + 2 a  

P 
(5.19) 

l -  

Inserted in (5.15) we thus find 

u=~h~oo {~,D+a[D(O)+ D(rc)]} 

1 D ( r c ) ] } )  (5.20) = ~ hOJo ( D + (1- p) {D--~ [D(O) + 

which coincides with the exact result (5.16). 
In summary, we can conclude that the MSA internal energy 

approximates the exact result well at T = 0 .  (When T increases the dif- 
ference bcomes even smaller.) To O(e 2) the results actually coincide. This 
also follows from the results (5.4) and (5.6). To this order in e, u varies 
linearly with p. However, to O(e 4) the MSA result will differ somewhat 
from the exact result (except at p = 0 and p = 1). As a function of p the two 
results have slightly different slopes at p = 0 [cf. Eqs. (5.9) and (5.10)], 
while at p = 1 the slopes are the same. 

For the extreme case [g[ = 1, the u has been computed numerically for 
arbitrary p ( T =  0), and the results are plotted in Figs. 1 and 2. Clearly the 
results differ little, and the difference has roughly a parabolic shape, with 
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maximum near p = 0.5. When  e becomes smaller this difference vanishes 
rapidly, and double precision computa t ions  will be needed. In view of the 
parabolic shape and the analytic results at the end points this difference 
can be estimated easily. The max imum difference is thus roughly half the 
difference between (5.9) and (5.10) at p = �89 This max imum is thus 

1 1 5 1  
_ g4 

dUmax ---- UMSA U~x'~Uo 216  64 2 

~ l . 2 x  10 3b/0~4 (5.21) 

Relative to the g round  state energy Uo of a single oscillator the error is 
very small, since [el ~< 1. However,  relative to the change in u when p varies 
from 0 to 1, the error is somewhat  larger. With (5.14) this becomes roughly 

~Um.x ~ U0 =2--~ 

which still is small. 
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